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Mechanistic Data Science
«Mechanistic data science combines mechanistic calibrated principles and collected data to 
accelerate the knowledge extraction and improve predictive capacity» 

Purely data-driven

Known principles with 
uncertain parameters

Limited data and 

scientific knowledge
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MDS

The development of MDS models follows six steps:

1. Multimodal data generation/collection

2. Extraction of mechanistic features

3. Knowledge-driven dimension reduction

4. Reduced order surrogate models

5. Data science method for regression classification

6. System design
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F a t i g u e  a n d  M a c h i n e  L e a r n i n g

Course outline

Part I – Tuesday May 14th
• Introduction to Machine Learning

• Definitions and classifications
• Main architectures

• Multi-layer perceptron
• Network and neurons
• Training algorithm
• The loss-function

Hands-on tutorial: build a NN with Google Tensorflow
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AIArtificial Intelligence is a technique which enables the 
machine to mimic the human behaviour.

Definitions
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Machine Learning is a type of Artificial Intelligence that 
provides  computers with the ability to learn without being 
explicitly  programmed.

AI

ML

Artificial Intelligence is a technique which enables the 
machine to mimic the human behaviour.

Definitions
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Machine Learning is a type of Artificial Intelligence that 
provides  computers with the ability to learn without being 
explicitly  programmed.

AI

ML

DL

Artificial Intelligence is a technique which enables the 
machine to mimic the human behaviour.

Definitions

Deep Learning is a branch of Machine Learning that 
comprehends the techniques using deep layered 
structures.
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Machine Learning is a type of Artificial Intelligence that 
provides  computers with the ability to learn without being 
explicitly  programmed.

AI

ML

DL

Artificial Intelligence is a technique which enables the 
machine to mimic the human behaviour.

Definitions

Deep Learning is a branch of Machine Learning that 
comprehends the techniques using deep layered 
structures.

Supervised learning
Learn to predict an output y from an input x from a set of labelled 
data (i.e., training dataset).
Unsupervised learning
Discovers patterns in unlabeled data x using similarity metrics.
Reinforcement learning
Learn to best react to an input x with a decision y based on the 
effect of y on a defined scoring function.

Learning approaches

Identify CATs and DOGs trained on 
labelled pictures

Cluster similar documents based on the 
text content

Learn to play chess by winning or losing
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Type of problems

Regression
Learn a continuous function that predict the features y 
from the inputs x on the labelled data (X, Y):

𝑓: 𝑓 𝑥 = 𝑦 |  min
𝑓

𝐸(𝑌, 𝑓 𝑋 )

Classification
Learn a discrete function that predicts the class k from the 
input x on the labelled data (X, Y): 

𝑓: 𝑓 𝑥 = 𝑘 |  min
𝑓

𝐸(𝑌, 𝑓 𝑋 )

Clustering
Cluster a set of unlabelled observations X into k cluster by 
maximizing a similarity metric L:

𝑘| max
𝑘

𝐿(𝑋𝑘)
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Main Architectures

Multi Layers 
Perceptron

(MLP)

Convolutional Neural 
Networks

(CNN)

Recurrent Neural 
Networks

(RNN)

Generative 
Adversarial Network

(GAN)

Regression 
Classification

Supervised 
training

Image 
processing 

Classification
Supervised 

training

Time history 
processing

Classification
Regression
Supervised 

training

Generative 
algorithm

Adversarial 
training
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MLP: Network and neurons

Is based on the idea of an artificial neuron:

[1] Mcculloch, Warren and Pitts, Walter. "A Logical Calculus of Ideas Immanent in Nervous Activity." Bulletin of Mathematical Biophysics 5 (1943): 127--147.

𝑤𝑘1

𝑤𝑘2

𝑤𝑘𝑖

𝑤𝑘𝑛

𝑦𝑘

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑥𝑖

Human neuron Artificial neuron Mathematical Expression

𝑦𝑘 = 𝒜 𝑏𝑘 + ෍

𝑖

𝑤𝑘𝑖𝑥𝑖

or

𝑦𝑘 = 𝒜 ෍

𝑖=0

𝑛

𝑤𝑘𝑖𝑥𝑖

𝑥0 = 1, 𝑤𝑘0 = 𝑏𝑘

𝑏𝑘

1
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MLP: Network and neurons

The Multi Layer Perceptron (i.e., a Neural Network) is a stacked architecture of 
interconnected artificial neurons.

𝑤𝑘1

𝑤𝑘𝑁

𝑦1

𝑥1

𝑥𝑁

𝑏1𝑥0

Single output

𝑦1 = 𝒜 σ𝑖=0
𝑁 𝑤1𝑖𝑥𝑖

𝑦 = 𝒜 𝑏1 𝑤11 ⋯ 𝑤1𝑁

1
𝑥1

⋮
𝑥𝑁

= 𝒜(𝑾𝒙)

1 × 1 =  1 × 𝑁 + 1  [ 𝑁 + 1 × 1]

N+1 Parameters
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MLP: Network and neurons

The Multi Layer Perceptron (i.e., a Neural Network) is a stacked architecture of 
interconnected artificial neurons.

𝑤11

𝑤1𝑁

𝑦1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑦𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

Multiple output

𝑦𝑖 = 𝒜 ෍

𝑖=0

𝑁

𝑤1𝑖𝑥𝑖

𝑦1

⋮
𝑦𝑀

= 𝒜
𝑏1 𝑤11 ⋯ 𝑤1𝑁

⋮ ⋯ ⋯ ⋮
𝑏𝑁 𝑤𝑀1 ⋯ 𝑤𝑀𝑁

1
𝑥1

⋮
𝑥𝑁

 → 𝒚 = 𝒜 𝑾𝒙

𝑀 × 1 = 𝑀 × 𝑁 + 1 [ 𝑁 + 1 × 1]

M(N+1) parameters
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MLP: Network and neurons

The Multi Layer Perceptron (i.e., a Neural Network) is a stacked architecture of 
interconnected artificial neurons.

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

Multiple layers single output

𝑧0 𝑏1

𝑤11

𝑤1𝑀

𝑦1

𝑧𝑖 = 𝒜 ෍

𝑖=0

𝑁

𝑤1𝑖
1 𝑥𝑖

𝑧1

⋮
𝑧𝑀

= 𝒜1
𝑏1 𝑤11 ⋯ 𝑤1𝑁

⋮ ⋯ ⋯ ⋮
𝑏𝑁 𝑤𝑀1 ⋯ 𝑤𝑀𝑁

1
𝑥1

⋮
𝑥𝑁

𝒛 = 𝒜1(𝑾𝟏𝒙)
Input 
Layer

Hidden 
Layer

(Layer 1)

Output 
Layer

(Layer 2)

𝑦1 = 𝒜 ෍

𝑗=0

𝑀

𝑤1𝑗
2 𝑧𝑗

𝑦 = 𝒜2 𝑏1 𝑤11 ⋯ 𝑤1𝑀

1
𝑧1

⋮
𝑧𝑀

𝑦 = 𝒜2 𝑾𝟐𝒛 = 𝒜2(𝑾𝟐𝒜1 𝑾𝟏𝒙 )

𝑀 × 1 = 𝑀 × 𝑁 + 1 [ 𝑁 + 1 × 1]

M(N+1) parameters

1 × 1 = 1 × 𝑀 + 1 [ 𝑀 + 1 × 1]

M+1 parametersSingle Hidden layer: «shallow»
Multiple hidden layers: «Deep»

+
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MLP: Network and neurons

The Multi Layer Perceptron (i.e., a Neural Network) is a stacked architecture of 
interconnected artificial neurons.

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

Multiple layers multiple output

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑧𝑖 = 𝒜 ෍

𝑖=0

𝑁

𝑤1𝑖
1 𝑥𝑖

𝑧1

⋮
𝑧𝑀

= 𝒜1
𝑏1

1 𝑤11
1 ⋯ 𝑤1𝑁

1

⋮ ⋯ ⋯ ⋮
𝑏𝑁

1 𝑤𝑀1
1 ⋯ 𝑤𝑀𝑁

1

1
𝑥1

⋮
𝑥𝑁

𝒛 = 𝒜1(𝑾𝟏𝒙)

𝑦𝑘 = 𝒜 ෍

𝑖=0

𝑁

𝑤𝑘𝑖
2 𝑧𝑖

𝑦1

⋮
𝑦𝐿

= 𝒜2
𝑏1

2 𝑤11
2 ⋯ 𝑤1𝑁

2

⋮ ⋯ ⋯ ⋮
𝑏𝑁

2 𝑤𝑀1
2 ⋯ 𝑤𝑀𝐿

2

1
𝑧1

⋮
𝑧𝑀

𝑦 = 𝒜2 𝑾𝟐𝒛 = 𝒜2(𝑾𝟐𝒜1 𝑾𝟏𝒙 )

𝑦1

𝑦𝐿

Input 
Layer

Hidden 
Layer

(Layer 1)

Output 
Layer

(Layer 2)
𝑀 × 1 = 𝑀 × 𝑁 + 1 [ 𝑁 + 1 × 1]

M(N+1) parameters

𝐿 × 1 = 𝐿 × 𝑀 + 1 [ 𝑀 + 1 × 1]

L(M+1) parameters+
Single Hidden layer: «shallow»
Multiple hidden layers: «Deep»
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MLP: Activation functions
Activation functions mimic the “firing” of neuron, let them de-activate (i.e., reduce the influence of their results on 
the neuron output), using mathematical functions. The activation function must be:
• Non-constant2

• Bounded2 (at least its combination)
• Differentiable
• Monotonic (rare exceptions, e.g., “swish”)

[2] Kurt Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, Volume 4, Issue 2, 1991.
[3] K. Fukushima, Cognitron: A self-organizing multilayered neural network, Biol Cybern. 20 (1975) 121–136. https://doi.org/10.1007/BF00342633/METRICS.
[4] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-Normalizing Neural Networks, Adv Neural Inf Process Syst. 2017-December (2017) 972–981. https://doi.org/10.48550/arxiv.1706.02515

Name Expression Params Models
Linear 𝒜 𝑥 = 𝑥 - Regr.

Rectified Linear Unit (ReLU)[3] 𝒜 𝑥 = ቊ
0 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0 - Regr.

Leaky ReLU 𝒜 𝑥 = ቊ
𝛼𝑥 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

𝛼 Regr.

Scaled Exponential Linear Unit (SELU)[4] 𝒜 = 𝜆 ቊ
𝛼(𝑒𝑥 − 1) 𝑖𝑓 𝑥 < 0

𝑥 𝑖𝑓 𝑥 ≥ 0
𝛼, 𝜆 Regr.

Hyperbolic Tangent 𝒜 𝑥 = tanh(𝑥) - Class.

Sigmoid 𝒜 𝑥 =
𝑥

1 + 𝑒−𝑥 - Class.

18A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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Network and neurons

Multiple hidden layers

The Multi Layer Perceptron (i.e., a Neural Network) is a stacked architecture of 
interconnected artificial neurons.

Parameters
tunable parameters of the model (i.e. bias and weights of the 
network)

Hyper-parameters
Non-tunable parameters defining the model architecture and 
training strategy (number of layers, activation functions, ..)

Main takeouts:
• Neural networks are tensor product combined with operators 

(𝒜) -> explicit computation, extremely fast
• The number of parameters rapidly increase with increasing 

number of neurons or number of layers

19A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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Loss function

The MLP can be treated as a parametric function with parameters 𝜃 = {𝑤𝑖𝑗
𝑘 , 𝑏𝑗}:

𝒚 = 𝑀𝐿𝑃 𝒙; 𝜽 ∶ ℝ𝑁 → ℝ𝑀

The parameters (i.e., weights and bias) are defined by minimizing a loss function:

𝐿 ഥ𝒙, ഥ𝒚; 𝜃 = 𝑒𝑟𝑟(𝑀𝐿𝑃(ഥ𝒙), ഥ𝒚)

where ( ҧ𝑥, ത𝑦) is the training dataset containing a set of observation.

The training process is defined as an optimization problem:
𝜽𝒕𝒓𝒂𝒊𝒏𝒆𝒅 = arg min

𝜽
𝐿(ഥ𝒙, ഥ𝒚; 𝜃)

ҧ𝑥

𝑦 = 𝑀𝐿𝑃( ത𝑦; 𝜃)

Loss 
function ത𝑦

Loss

How do we choose the loss function?
Problem Output Final 𝒜 Loss

Regression Numerical Linear MSE

Classification 2 Class Sigmoid Binary Cross Entropy

Classification Multiple class SoftMax Cross Entropy

Regression Numerical (physical qoi) Linear MSE + physics constr.

Probabilistic regr. Probabilistic Linear Maximum Likelihood

20A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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Supervised Training
The loss is used to optimize the weights using the gradient:
For each weight 𝑤𝑖𝑗

𝑘 :

1. Compute 𝜕𝐿/𝜕𝑤𝑖𝑗
𝑘 to find a linear approximation

2. Update 𝑤𝑖𝑗
𝑘 with a step in the decreasing direction

The derivative of the loss w.r.t. each weights is a gradient vector:

 𝛁𝐿 ҧ𝑥, ത𝑦, 𝜽 =

𝜕𝐿

𝜕𝜃𝑖

𝜕𝐿

𝜕𝑦 ҧ𝑗

𝜕𝐿

𝜕 ҧ𝑥𝑘

∈ ℝ𝑁+𝑀+𝐻; 𝑖 ∈ 1, 𝑁 , 𝑗 ∈ 1, 𝑀 , 𝑘 ∈ [1, 𝐻]

Into N dimensions, the multidimensional gradient vector 
indicates the descending direction.

𝜽𝑖+1 = 𝜽𝑖 + 𝜇𝑖𝒇𝑖

𝑓𝑖 = −𝛁L(𝜽𝑖)

𝜇 is the learning rate defining the size of the step at each ith
iteration.

𝐿( ҧ𝑥, ത𝑦; 𝜃)

𝑤𝑖𝑗
𝑘

N: n° inputs
M: n° outputs
H: n° hyperparams

Need for 
optimizing 𝜃

Derivative 
w.r.t. inputs 

(PINN)

21A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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How do we define the term 𝜕𝐿/𝜕𝑤𝑖𝑗
𝑘 ?

The MLP is equivalent to:

𝑦 = ℎ 𝑔 𝑓 𝑥 , ℎ, 𝑔, 𝑓, with ℎ, 𝑔, 𝑓 the operator of each layer

The loss is equivalent to:

𝑙 = 𝐿 ഥ𝒙, ഥ𝒚; 𝜽 = 𝐿 ℎ 𝑔 𝑓 𝑥

The derivative of the loss can be computed with the 
chain rule:

𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕ℎ

𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑓

𝜕𝑓

𝜕𝑥

Computing the derivative from the last layer to the first one.

This operation in done on the computational graph and is called 
back-propagation (backwards in the network).

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

𝑥 𝒜(𝑊1 ∙ 𝑥) 𝑧 𝒜2 𝑊2 ∙ 𝑧 𝑦

𝑥 𝑓(∙) 𝑔(∙) 𝑦

𝑦 = 𝑔 𝑓 𝑥 → 𝑙 = 𝐿 𝑔 𝑓 𝑥

L loss

𝐿(𝑥, 𝑦, 𝜃) 𝑙

𝐿(𝑥, 𝑦, 𝜃) 𝑙

Back-propagation
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1. Define the computational graph of the newtork
𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

x𝑥

𝑊1

𝒜1

x

𝑊2

𝒜2

L

ത𝑦

𝑙

Back-propagation
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1. Define the computational graph of the newtork
2. Calucate the forward pass

1. Variables
𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

x𝑥

𝑊1

𝒜1

x

𝑊2

𝒜2

L

ത𝑦

𝑙

𝑧1 𝒜1 𝑧1

𝒜2 𝑧2
𝑧2

𝐿 ത𝑦 𝑧2

Back-propagation

24A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering



Advanced methodologies for the assessment of the fatigue response
F a t i g u e  a n d  M a c h i n e  L e a r n i n g

1. Define the computational graph of the newtork
2. Calucate the forward pass

a) Variables
b) Local gradients

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

x𝑥

𝑊1

𝒜1(∙)

x

𝑊2

𝒜2(∙)

L

ത𝑦

𝑙

𝑧1 𝑎1

𝑎2𝑧2

𝐿 ത𝑦 , 𝑎2

𝜕𝑧1/𝜕𝑥

𝜕𝑧1/𝜕𝑊1

𝜕𝑎1/𝜕𝑧1

𝜕𝑧2/𝜕𝑎1

𝜕𝑧2/𝜕𝑊2

𝜕𝑎2/𝜕𝑧2

𝜕𝐿/𝜕𝑎2

𝑎1 = 𝒜1 𝑧1

𝑎2 = 𝒜2 𝑧2

Back-propagation
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1. Define the computational graph of the newtork
2. Calucate the forward pass

a) Variables
b) Local gradients

3. Calculate the backward pass
a) Back-propagated error

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

x𝑥

𝑊1

𝒜1(∙)

x

𝑊2

𝒜2(∙)

L

ത𝑦

𝑙

𝑧1 𝑎1

𝑎2𝑧2

𝐿 ത𝑦 , 𝑎2

𝜕𝑧1/𝜕𝑥

𝜕𝑧1/𝜕𝑊1

𝜕𝑎1/𝜕𝑧1

𝜕𝑧2/𝜕𝑎1

𝜕𝑧2/𝜕𝑊2

𝜕𝑎2/𝜕𝑧2

𝜕𝐿/𝜕𝑎2

𝜕𝐿/𝜕𝑎2

𝑎1 = 𝒜1 𝑧1

𝑎2 = 𝒜2 𝑧2

𝜕𝐿/𝜕𝑧2

𝜕𝐿/𝜕𝑊2

𝜕𝐿

𝜕𝑎2

𝜕𝑎2

𝜕𝑧2
=

𝜕𝐿

𝜕𝑧2

𝜕𝐿

𝜕𝑧2

𝜕𝑧2

𝜕𝑊2 =
𝜕𝐿

𝜕𝑊2 

Back-propagation
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Back-propagation

1. Define the computational graph of the newtork
2. Calucate the forward pass

a) Variables
b) Local gradients

3. Calculate the backward pass
a) Back-propagated error

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

x𝑥

𝑊1

𝒜1(∙)

x

𝑊2

𝒜2(∙)

L

ത𝑦

𝑙

𝑧1 𝑎1

𝑎2 = 𝒚𝑧2

𝐿 ത𝑦 , 𝑎2

𝜕𝑧1/𝜕𝑥

𝜕𝑧1/𝜕𝑊1

𝜕𝑎1/𝜕𝑧1

𝜕𝑧2/𝜕𝑎1

𝜕𝑧2/𝜕𝑊2

𝜕𝑎2/𝜕𝑧2

𝜕𝐿/𝜕𝑎2

𝜕𝐿/𝜕𝑎2

𝑎1 = 𝒜1 𝑧1

𝑎2 = 𝒜2 𝑧2

𝜕𝐿/𝜕𝑧2

𝜕𝐿/𝜕𝑊2

𝜕𝐿/𝜕𝑎1

𝜕𝐿/𝜕𝑧1𝜕𝐿/𝜕𝑊1
𝜕𝐿

𝜕𝑎2

𝜕𝑎2

𝜕𝑧2
=

𝜕𝐿

𝜕𝑧2

𝜕𝐿

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1 =
𝜕𝐿

𝜕𝑎1  →
𝜕𝐿

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1 =
𝜕𝐿

𝜕𝑧1

𝜕𝐿

𝜕𝑧1

𝜕𝑧1

𝜕𝑊1 =
𝜕𝐿

𝜕𝑊1

PINN

27A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering



Advanced methodologies for the assessment of the fatigue response
F a t i g u e  a n d  M a c h i n e  L e a r n i n g

Optimizer

Once the gradient is defined, the weights are iteratively updated 

with gradient-based optimizers. The most common are:

1. Batch gradient descent

𝑤(𝑖+1) = 𝑤(𝑖) − 𝛼∇𝑤𝐿 ҧ𝑥, ത𝑦, 𝑤 𝑖  for i ∈ (1, 𝑛𝑒𝑝𝑜𝑐ℎ𝑠)

𝛼 is the learning rate, it can be fixed or varying with the epochs.

2. Mini-batch (or Stochastic) gradient descent

𝑤(𝑖+1) = 𝑤(𝑖) − 𝛼∇𝑤𝐿 ҧ𝑥𝑘 , ത𝑦𝑘 , 𝑤 𝑖  for i ∈ 1, 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 , k ∈ (1, 𝑛𝑏)

Data are shuffled and divided into 𝑛𝑏 mini batches. If the batch 

size is one, it is called Stochastic Gradient Descent (SGD).
The number of epochs and the batch size are hyper-
parameters of the model.
The number of epoch can be automatically selected with a 
early stopping algorithm that interrupts the optimization at 
convergence.

✓ Always converge toward - local or global- 
minimum

✓ Fixed 𝛼 can be used

˟ Slow
˟ Redundant

✓ Faster iterations
✓ Non redundant calculations
✓ Add nois due to random sampling halping 

generalization

˟ May not converge and stack in local minima
˟ Loss oscillation may require variable 𝛼 (e.g., 

exponential decay)
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Optimizer: momentum and adaptivity

The momentum is defined as a fraction of the previous step:

𝑚 = 𝜇(𝑤(𝑖) − 𝑤(𝑖−1)) 

m is used to compute the velocity:

𝑣(𝑖+1) = 𝜌𝑣 𝑖 − 𝛼∇𝐿 𝑤 𝑖

𝑤(𝑖+1) = 𝑤(𝑖) + 𝑣(𝑖+1)

With adaptivity, the step is scaled w.r.t. the (scaled) history of 

the gradient, so:

𝑤(𝑖+1) = 𝑤(𝑖) −
𝛼𝛁𝐿 𝑤 𝑖

σ𝑗
𝑖 ∇𝐿(𝑤𝑗) 2

𝑤(𝑖+1) = 𝑤(𝑖) −
𝛼𝛁𝐿 𝑤 𝑖

𝛾 ∇𝐿 2 + σ𝑗
𝑖−1 1 − 𝛾 j∇L wj

∇L(wi)

∇L(wi+1)

𝑤

𝐿

𝑤𝑖−1 𝑤𝑖 𝑤𝑖+1

With momentum
Without momentum

AdaGrad

RMSProp RMSProp + Momentum = Adam
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Optimizer: momentum and adaptivity
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Optimizer: momentum and adaptivity
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Optimizer: learning rate
Every optimizer presents a learning rate, which affects the 

training procedure.

• Small lr -> slow convergence

𝑤

𝑖

𝐿

𝐿

Too low
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Optimizer: learning rate
Every optimizer presents a learning rate, which affects the 

training procedure.

• Small lr -> slow convergence

• Good learning rate  -> optimal

𝑤

𝑖

𝐿

𝐿

Too low
Good
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Optimizer: learning rate
Every optimizer presents a learning rate, which affects the 

training procedure.

• Small lr -> slow convergence

• Good learning rate  -> optimal

• High lr -> not converge to minima

𝑤

𝑖

𝐿

𝐿

Too low
Good

Too high
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Generalization: under-fitting and over-fitting

When bounded and non-constant activation functions are used, a 

MLPwith a sufficient number of hidden units is a universal aproximator2

• Not enough hidden units -> can not approximate -> underfitting

• Enough units but noisy data -> approximates the noise -> overfitting

Unmodeled data

Modeled noise

Loss function

Model complexity

Prediction error

35A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering



Advanced methodologies for the assessment of the fatigue response
F a t i g u e  a n d  M a c h i n e  L e a r n i n g

Generalization: under-fitting and over-fitting

How can I check the prediction error? Data splitting!

Splitting techniques:

• Single-split: divide dataset into validation and split

• Leave one out: multiple training with one sample 

out each training

• K-Fold: split dataset in k-fold and repeat training k 

times with kth subset as validation
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Generalization: under-fitting and over-fitting

How can I check the prediction error? Data splitting!

Splitting techniques:

• Single-split: divide dataset into validation and split

• Leave one out: multiple training with one sample 

out each training

• K-Fold: split dataset in k-fold and repeat training k 

times with kth subset as validation

Train on training and predict on validation at each 

epochs:

Underfitting: training loss tracks validation loss

𝑖

𝐿

Training
Validation
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Generalization: under-fitting and over-fitting

How can I check the prediction error? Data splitting!

Splitting techniques:

• Single-split: divide dataset into validation and split

• Leave one out: multiple training with one sample 

out each training

• K-Fold: split dataset in k-fold and repeat training k 

times with kth subset as validation

Train on training and predict on validation at each 

epochs:

Underfitting: training loss tracks validation loss

Overfitting: Validation loss increase while training keep 

decreasing 𝑖

𝐿

Training
Validation

Early 
stopping
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Generalization: under-fitting and over-fitting

There are algorithmic solutions to overfitting:

• Regularization
Add a weight regularization term to the loss function (L1= ‘lasso’, L2 =‘ridge’)

𝐿 = 𝑀𝑆𝐸 + 𝜆 𝑤 𝑖 𝑘
, 𝑘 = 1 𝑜𝑟 2

• Dropout6

Drop MLP neuron in hidden layers at each epochs.
Define a dropout probability 𝑝𝑖 at each 𝑖𝑡ℎ layer
At each iteration 

Extract 𝑝𝑘
𝑖 ∈ [0,1] for each 𝑘𝑡ℎ neurons in 𝑖𝑡ℎ layer

Remove neurons with 𝑝𝑘
𝑖 < 𝑝𝑖

Remove connection 𝑤𝑑𝑟𝑜𝑝 = 𝑤𝑗𝑘
𝑖 ∀𝑗

Compute the loss 𝐿(𝑤 ∩ 𝑤𝑑𝑟𝑜𝑝)

Backpropagate 
Update weights 𝑤 ∩ 𝑤𝑑𝑟𝑜𝑝

[6] Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Hands-on tutorial

Google Colab:
Here you have a simple code for training a regression MLP:
https://colab.research.google.com/github/google/eng-
edu/blob/main/ml/cc/exercises/linear_regression_with_synthetic_data.ipynb

Suggested material:

Here you can find an online course on how to use Python:
https://www.youtube.com/watch?v=rfscVS0vtbw

Here you can find a crash course on ML provided by Google that will teach you the basic principles together with the 
basic steps with the Tensorflow library in Keras:
https://developers.google.com/machine-learning/crash-course/ml-intro

Since organizing and preprocessing the data is a fundamental aspect of the ML projects, take a look at this short course 
about the most common data processing techniques:
https://developers.google.com/machine-learning/data-prep

40A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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Course outline

Part I – Tuesday May 14th
• Introduction to Machine Learning

• Definitions and classifications
• Main architectures

• Multi-layer perceptron
• Network and neurons
• Training algorithm
• The loss-function

Hands-on tutorial: build a NN with Google Tensorflow

Part II – Friday May 17th
• ML applied to structural integrity

• General MDS framework
• State of the art

• ML model for scientific applications
• Overview of PINN
• Overview of DeepONet
• Overview of BNN

Hands-on tutorial: build a BNN with Google Tensorflow Probabilistic

A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering



Introduction
H o w  c a n  w e  u s e  d a t a - d r i v e n  m e t h o d s  i n  s c i e n c e ?

2

Mechanistic Data Science
«Mechanistic data science combines mechanistic calibrated principles and collected data to 
accelerate the knowledge extraction and improve predictive capacity» 

Purely data-driven

Known principles with 
uncertain parameters

Limited data and 

scientific knowledge

Th
eo

ry
-b

as
ed

Data

Scientific 
knowledge

1

2

3

MDS

The development of MDS models follows six steps:

1. Multimodal data generation/collection

2. Extraction of mechanistic features

3. Knowledge-driven dimension reduction

4. Reduced order surrogate models

5. Data science method for regression classification

6. System design

A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering
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Fatigue + Machine + Learning
in Engineering

Growing trend!

ML for fatigue: state of the art

Growing research interests towards ML applied to fatigue:

• Data-driven problem from the beginning

• Phenomenological modes derived from observations

• Few physics equations are known (e.g., LEFM)

Main goals:

• Predict the effect of design variables on the fatigue 

response from data (e.g. manufacturing, 

environmental)

• Discover governing models from observation and 

expand the knowledge

• Discover effect of defects and porosity on fatigue 

response
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ML applied to structural integrity

When applying ML to scientific problems we want to:

1. Merge the data with physical knowledge

2. Understand the confidence of the prediction

+ in case of stochastic phenomena (e.g., fatigue):

3. Have a probabilistic prediction

Physics-informed neural networks

[8] Blundell, Charles, et al. "Weight uncertainty in neural network." International conference on machine learning. PMLR, 2015.

[7]
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Physics-Informed Neural Networks
Neural networks that are trained to solve supervised learning tasks while respecting 

any given laws of physics described by general nonlinear partial differential 

equations.

A general PDE over a domainΩ, in a time interval [0, 𝑇], with non-linear operator 𝒩 is 

introduced:

𝑢𝑇 + 𝒩 𝑢 = 0, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑡]

The solution 𝑢(𝑥, 𝑡) is learned by a MLP, defined as 𝑀𝐿𝑃(𝑡, 𝑥; 𝜽), from a set of observed 

data ( ҧ𝑥, ҧ𝑡, ത𝑢).

With a standard approach:

𝜽𝒕𝒓𝒂𝒊𝒏𝒆𝒅 = arg min
𝜃

𝐿( ҧ𝑥, ҧ𝑡, ത𝑢) = arg min
𝜃

𝑀𝑆𝐸(𝑀𝐿𝑃 ҧ𝑥, ҧ𝑡; 𝜃 , ത𝑢)

𝑥 𝑡

MLP

𝑢

L

Standard MLP

ത𝑦

𝑙

Standard training

( ҧ𝑥, ҧ𝑡)
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Physics-Informed Neural Networks
Neural networks that are trained to solve supervised learning tasks while respecting 

any given laws of physics described by general nonlinear partial differential 

equations.

A general PDE over a domain Ω, in a time interval [0, 𝑇], with non-linear operator 𝒩 is 

introduced:

𝑢𝑇 + 𝒩 𝑢 = 0, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑡]

The solution 𝑢(𝑥, 𝑡) is learned by a MLP, defined as 𝑀𝐿𝑃(𝑡, 𝑥; 𝜽), from a set of observed 

data ( ҧ𝑥, ҧ𝑡, ത𝑢).

With a standard approach:

𝜽𝒕𝒓𝒂𝒊𝒏𝒆𝒅 = arg min
𝜃

𝐿( ҧ𝑥, ҧ𝑡, ത𝑢) = arg min
𝜃

𝑀𝑆𝐸(𝑀𝐿𝑃 ҧ𝑥, ҧ𝑡; 𝜃 , ത𝑢)

Since the PDE must hold for a valid solution, it should embed in the loss function:

𝜽𝒕𝒓𝒂𝒊𝒏𝒆𝒅 = arg min
𝜃

𝐿 ҧ𝑥, ҧ𝑡, ത𝑢 + 𝑀𝐿𝑃𝑇 ҧ𝑥, ҧ𝑡; 𝜃 + 𝒩 𝑢  

𝑢𝑇 + 𝒩 𝑢 = 0

𝑥 𝑡

MLP

𝑢

L

Standard MLP

ത𝑦

L

+

𝑙

Standard training
PINN training

( ҧ𝑥, ҧ𝑡)
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Physics-Informed Neural Networks
Physics constraints can be expanded out of the training data using collocation points:

𝜃𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = arg min
𝜃

𝐿𝑀𝑆𝐸 ҧ𝑥, ҧ𝑡, ത𝑢; 𝜽 + 𝐿𝑝ℎ𝑦( ෤𝑥, ǁ𝑡; 𝜽) , ෤𝑥, ǁ𝑡  𝑖𝑛 ℝ \Ω 

Increasing collocations points leads to better prediction -> PINN added value!

𝑥 𝑡

MLP

𝑢

L

Standard MLP

( ҧ𝑥, ҧ𝑡)

ത𝑢

L

+

𝑙

Standard training
PINN training

( ෤𝑥, ǁ𝑡)

( ෤𝑥, ǁ𝑡)

( ҧ𝑥, ҧ𝑡)

Initial 
conditions

BCs
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Physics-Informed Neural Networks
Collocation help extrapolation.

Interpolation vs extrapolation:

Interpolation: inside the training data domain

Extrapolation: outside the training data domain

Toy example:

𝑦 = 𝑓 𝑥 = sin 𝑥

𝑀𝐿𝑃 𝑥; 𝜃 = 𝑦𝑝𝑟𝑒𝑑

The PINN training enforce the correct derivative:

𝐿 ҧ𝑥, ത𝑦, 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

𝑀𝐿𝑃 ҧ𝑥𝑖 , 𝜃 − ത𝑦𝑖
2 +

1

𝑀
෍

𝑗=1

𝑀
𝑑

𝑑𝑥
𝑀𝐿𝑃 ෤𝑥𝑗 , 𝜃 − cos ෤𝑥𝑗

2

MSE PI
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Back-propagation in PINN

1. Define the computational graph of the newtork
2. Calucate the forward pass

a) Variables
b) Local gradients

3. Calculate the backward pass
a) Get the gradient 𝜕𝑦/𝜕 ҧ𝑥

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

L loss

xҧ𝑥| ෤𝑥

𝑊1

𝒜1(∙)

x

𝑊2

𝒜2(∙)

L
ത𝑦

𝑙

𝑧1 𝑎1

𝒚𝑧2

𝐿 ത𝑦 , 𝑎2

𝜕𝑧1/𝜕𝑥

𝜕𝑎1/𝜕𝑧1

𝜕𝑧2/𝜕𝑎1

𝜕𝑦/𝜕𝑧2

𝜕𝐿/𝜕𝑎2

𝜕𝐿/𝜕𝑎2

𝑎1 = 𝒜1 𝑧1

𝑦 = 𝑎2 = 𝒜2 𝑧2

𝜕𝑦/𝜕𝑧2

𝜕𝑦

𝜕𝑎1 =
𝜕𝑦2

𝜕𝑧2  

𝜕𝑦

𝜕𝑧2 =
𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑦

𝜕𝑧1 =
𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑦

𝜕 ҧ𝑥
=

𝜕𝑦2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑥

50A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering

RECALL

𝜕𝑦/𝜕𝑎1

𝜕𝑦/𝜕𝑧1𝜕𝑦/𝜕 ҧ𝑥
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PINN outtakes

It can be concluded that:
• PINN has a standard architecture

• The way the network is trained makes it physics-informed

• All method applied to MLP can be extended to PINN (Dropout, 

regularization, ..)

• It can be extended behind PDEs, anywhere there is an apriori knwoledge

coupling the input with the output with a mathematical expression

• Thanks to the MLP differentiability, this expression can contain derivatives
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PINN applications
Prediction of the SIF of interacting ellipsoidal defects from defect 

characteristics [8] :

• Input: defect features

• Output: defect stress intensity factor Δ𝐾𝑟𝑒𝑙

• Physics knowledge: Murakami equation: 

Δ𝐾𝑟𝑒𝑙 = 𝐹 ∙ 𝑆 ∙ 𝐾𝑡 𝐴𝑅 ∙ 𝐾𝑡 𝐹𝑅 ∙ 𝐾𝑡 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∙ 𝑌 ∙ 𝜋 𝑎𝑟𝑒𝑎 0.5

𝑑Δ𝐾𝑟𝑒𝑙

𝑑𝑎𝑟𝑒𝑎
= 𝐶 𝑎𝑟𝑒𝑎 −

3
4

Physics-informed loss:

L = 𝑀𝑆𝐸 +
𝜕Δ ෠𝐾𝑟𝑒𝑙

𝜕𝑎𝑟𝑒𝑎
−

𝑑Δ𝐾𝑟𝑒𝑙

𝑑𝑎𝑟𝑒𝑎

• Improved results training on expanded database

A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering 52

[8] Wang et al, Fatigue life prediction driven by mesoscopic defect data, Engineering Applications of Artificial Intelligence (2024)
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PINN applications
Prediction of multi-axial fatigue response[9] :

• Input: shear and normal strain amplitude, model 

parameters 

• Output: fatigue life

• Physics knowledge: multi-axial fatigue model

𝜏𝑓′

𝐺
2𝑁𝑓

𝑏0
+ 𝛾𝑓

′ 2𝑁𝑓
𝑐0

− 𝑎 = 0

Physics-informed loss:

L = 𝑀𝑆𝐸 +
𝜏𝑓

𝐺
2𝑁𝑝𝑖

𝑏0
+ 𝛾𝑓

′ 2𝑁𝑝𝑖
𝑐0

− 𝑎

• Improved results w.r.t. standard NN

• Tested over different models

A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering 53

[9] He, Zhao, Yan, MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction, European Journal of Mechanics and Solids (2023)
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PINN applications
Prediction of fatigue curves[10] of Additively Manufactured 

metals from process parameters:

• Input: manufacturing parameters

• Output: fatigue life

• Physics knowledge: Murakami, negative slope, positive 

curvature:

𝑑𝑁𝑓

𝑑𝑆𝑎
< 0;

𝑑2𝑁𝑓

𝑑𝑆𝑎
2 > 0;

Physics-informed loss:

L = 𝑀𝑆𝐸 +
−

𝑑𝑁𝑓

𝑑𝑆𝑎
+

𝑑𝑁𝑓

𝑑𝑆𝑎

2

• Improved results w.r.t. standard NN

• Tested over different models

[10] Centola, Ciampaglia, Tridello, Paolino. Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4 components, FFEMS (2024)
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TUTORIAL
Click here

https://colab.research.google.com/drive/1CWiiF7JHbf3J_1oDPFdEPDGiOzCu3MyX?usp=sharing
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ML applied to structural integrity

When applying ML to scientific problems we want to:

1. Merge the data with physical knowledge

2. Understand the confidence of the prediction

+ in case of stochastic phenomena (e.g., fatigue):

3. Have a probabilistic prediction

Novel methods properly developed to account for:

• The physics of the modelled problem

• The stochastic nature of the problem

• The uncertainty of the model

Physics-informed neural networks

[8] Blundell, Charles, et al. "Weight uncertainty in neural network." International conference on machine learning. PMLR, 2015.

[8]

[7]

Bayesian neural networks
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Bayesian Neural Networks
“Minimizing MSE of the mean is equivalent to maximizing the log 

likelihood of the data under the assumption of Gaussian noise.”

It is hence true that:

𝑀𝐿𝑃 𝒙, 𝒘 = 𝒚, 𝑥 ∈ ℝ𝑁 , 𝑦 ∈ ℝ𝑀

𝑤 = arg max
𝒘

log 𝑃 ഥ𝒚 ഥ𝒙, 𝒘 = arg max
𝒘

෍

𝑖

log 𝑃( ҧ𝑥𝑖 , ത𝑦𝑖 , 𝒘)

This approach can be extended to a probabilistic neural network, 

where the weights 𝒘 are random functions -> Bayesian Neural Network. 

The BNN is random and will give a different results every time is used.

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

𝑤𝑖𝑗
𝑘 is a random variable

NN

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

BN
N
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Bayesian Neural Networks
We want to fine the distribution of weights 𝑤 given the training dataset 

𝒟 = ( ҧ𝑥, ത𝑦), which maximize 𝑃(𝑤|𝒟). 

Using Bayes theorem:

𝑃 𝑤 𝒟 =
𝑃 𝒟 𝑤 𝑃 𝑤

𝑃 𝒟

The predicted expectation can be computed with mutiple predictions:

𝑃 ത𝑦 ҧ𝑥 = 𝔼𝑃 𝑤 𝒟 [𝑃( ത𝑦, ҧ𝑥, 𝑤)] ≈ ෍

𝑖

𝑝 𝑤 𝒟 𝐵𝑁𝑁𝑖( ҧ𝑥, ത𝑦, 𝑤)

With a variational approach, the posterior distribution is a parametric 

function (e.g., Gaussian, Bernoulli, ..) 𝑞(𝑤, 𝜃) with parametrers 𝜃.

A. Ciampaglia, Departmento of Mechanical and Aerospace Engineering 58

Posterior 
distribution Prior 

distribution

Prediction 
On 𝒟

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿

𝑤11

𝑤1𝑁

𝑧1

𝑥1

𝑥𝑁

𝑏𝑀

𝑥0

𝑧𝑀

𝑤𝑀1

𝑏1

𝑤𝑀𝑁

⋮ ⋮

𝑧0 𝑏1

𝑤11

𝑤𝑀𝐿
𝑏𝐿

𝑤𝑀1

𝑤𝑀𝐿

𝑦1

𝑦𝐿
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Bayesian Neural Networks: training
The problem becomes:

𝜃 = arg min
𝜃

𝐾𝐿[𝑞(𝑤|𝜃)| 𝑃 𝑤 𝒟

Where KL is the Kullback-Leibler divergence between two distributions:

𝐾𝐿[𝑞(𝑤|𝜃)| 𝑃 𝑤 𝒟 = න 𝑞 𝑤 𝜃 log
𝑞 𝑤 𝜃

𝑃 𝑤 𝒟
𝑑𝑤 = න 𝑞 𝑤 𝜃 log

𝑞 𝑤 𝜃

𝑃 𝑤 𝑃(𝒟|𝑤)
𝑑𝑤

That is equal to:

𝐾𝐿[𝑞(𝑤|𝜃)| 𝑃 𝑤 𝒟 = 𝐾𝐿[𝑞(𝑤|𝜃)| 𝑃 𝑤 − න log 𝑃 𝒟 𝑤 𝑞 𝑤 𝜃 𝑑𝑤

𝐿(𝒟, 𝜃) = 𝐾𝐿[𝑞(𝑤|𝜃)| 𝑃 𝑤 − 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤)

𝐿(𝒟, 𝜃) = 𝔼𝑞 𝑤 𝜃 [log 𝑞 𝑤 𝜃 − log 𝑃 𝑤 − log 𝑃 𝒟 𝜃 ]

We recognize a data-related term and a complexity term in the loss function

𝔼𝑓 𝑥 𝑔 𝑥 = න 𝑔 𝑥 𝑓 𝑥 𝑑𝑥

x

y
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Bayesian Neural Networks: training
To minimize the loss we need its gradient. Using the proposition:

𝜕

𝜕𝜃
 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤) = 𝔼𝑞 𝜖 [

𝜕𝑓 𝑤, 𝜃

𝜕𝑤

𝜕𝑤

𝜕𝜃
+

𝜕𝑓 𝑤, 𝜃

𝜕𝜃
]

With 𝜖 a small random number so that 𝑞 𝜖 𝑑𝜖 = 𝑤 𝑤 𝜃 𝑑𝜃.

𝔼𝑞 𝑤 𝜃 log 𝑞 𝑤 𝜃 − log 𝑃 𝑤 − log 𝑃 𝒟 𝑤 = 𝔼𝑞 𝑤 𝜃 𝑙 𝜃, 𝒟

≈ ෍
𝑖

𝑛

log 𝑞 𝑤(𝑖) 𝜃 − log 𝑃 𝑤(𝑖) − log 𝑃 𝒟 𝑤(𝑖)

In case of Gaussian distribution of weights 𝑞 𝑤 𝜃 = 𝒩 𝑤 𝜇, 𝜎), 𝜃 = (𝜇, 𝜎):

𝑤 = 𝜇 + log 1 + exp 𝜎 ∙ 𝜖

𝜕

𝜕𝜇
 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤) = 𝔼𝑞 𝜖

𝜕𝑙 𝑤, 𝜃

𝜕𝑤
1 +

𝜕𝑙 𝑤, 𝜃

𝜕𝜇
= ∇𝜇𝐿

𝜕

𝜕𝜎
 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤) = 𝔼𝑞 𝜖

𝜕𝑙 𝑤, 𝜃

𝜕𝑤

𝜖

1 + exp −𝜎
+

𝜕𝑙 𝑤, 𝜃

𝜕𝜎
= ∇𝜎𝐿

Gradient of 
back propagation

Gradient of 
BNN

Monte-Carlo 
sampling from 
the variational 

posterior
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Bayesian Neural Networks: Bayes by Backpropagation

𝜕

𝜕𝜇
 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤) = 𝔼𝑞 𝜖

𝜕𝑙 𝑤, 𝜃

𝜕𝑤
1 +

𝜕𝑙 𝑤, 𝜃

𝜕𝜇
= ∇𝜇𝐿

𝜕

𝜕𝜎
 𝔼𝑞(𝑤|𝜃) log(𝑃(𝒟|𝑤) = 𝔼𝑞 𝜖

𝜕𝑙 𝑤, 𝜃

𝜕𝑤

𝜖

1 + exp −𝜎
+

𝜕𝑙 𝑤, 𝜃

𝜕𝜎

xҧ𝑥| ෤𝑥

𝑊1

𝒜1(∙)

x

𝑊2

𝒜2(∙)

L
ത𝑦

𝑙

𝑧1 𝑎1

𝒚𝑧2

𝜕𝑧1/𝜕𝑤

𝜕𝑎1/𝜕𝑧1

𝜕𝑧2/𝜕𝑎1

𝜕𝑦/𝜕𝑧2

𝑎1 = 𝒜1 𝑧1

𝑦 = 𝑎2 = 𝒜2 𝑧2

𝜕𝐿/𝜕𝑧2

𝜕𝐿/𝜕𝑎1

𝜕𝐿/𝜕𝑧1

𝒩

𝜇 𝜕𝑤1/𝜕𝜇

𝜕𝐿/𝜕𝑤1

𝜕𝐿/𝜕𝜇

𝜕𝐿/𝜕𝑦

𝜕𝑙/𝜕y

𝜎

𝜕𝐿/𝜕𝜎

𝜕𝑤1/𝜕𝜎

𝜕𝑙 𝑤, 𝜃

𝜕𝑤1
=

𝜕𝑙

𝜕𝑦

𝜕𝑦

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑤1

𝜕𝑙 𝑤, 𝜃

𝜕𝜇
=

𝜕𝑙

𝜕𝑦

𝜕𝑦

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑤1

𝜕𝑤1

𝜕𝜇
𝜕𝑙 𝑤, 𝜃

𝜕𝜎
=

𝜕𝑙

𝜕𝑦

𝜕𝑦

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑤1

𝜕𝑤1

𝜕𝜎

From the 
computational graph

𝜖

The expectation is computed by 
randombly sampling 𝜖 n times 

(Monte Carlo sampling)
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Bayesian Neural Networks
• Allow to estimate the model uncertainty

• It is a modified architecture with probabilistic weights

• It requires a modified back-propagation

• The number of parameters increases (double for diagonal normal, escalate for 

multivariate distributions with weights co-variance)

• Can be used for adaptive sampling strategies: sample data in uncertain 

regions on domain

• Can be used to suppress connections with high noise-to-signal ratio (e.g., 𝜎/𝜇)



Thank you all for your kind 
attention!

email: alberto.ciampaglia@polito.it
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